|   | 
Created by Freddy Ulate Agüero
over 11 years ago
 | |
| Question | Answer | 
| Constante | \[ c^{'} = 0 \] | 
| Constante por función | \[ (cf)^{'} = cf^{'} \] | 
| Suma-Resta de funciones | \[ (f \pm g)^{'} = f^{'} \pm g^{'} \] | 
| Multiplicación de funciones | \[ (fg)^{'} = f^{'}g + fg^{'} \] | 
| División de funciones | \[ \left(\frac{f}{g} \right)^{'} = \frac{f^{'}g - fg^{'}}{g^2} \] | 
| Potencias | \[ x^{n} = nx^{n-1} \] | 
| Logaritmo Natural | \[ (\ln x)^{'} = \frac{1}{x} \] | 
| Logaritmo de base a | \[ (\log_a x)^{'} = \frac{1}{x \ln a} \] | 
| Exponencial Natural | \[ (e^{x})^{'} = e^x \] | 
| Función Exponencial | \[ (a^x)^{'} = a^x \ln a \] | 
| Función Seno | \[ (\sin x)^{'} = \cos x \] | 
| Función Coseno | \[ (\cos x)^{'} = - \sin x \] | 
| Función Tangente | \[ (\tan x)^{'} = \sec^{2} x \] | 
| Función Secante | \[ (\sec x)^{'} = \sec x \tan x \] | 
| Función Cosecante | \[ (\csc)^{'} = - \csc x \cot x \] | 
| Función Cotangente | \[ (\cot x)^{'} = - \csc^2 x\] | 
| Regla de la cadena | \[ (f(g(x)))^{'} = f^{'}(g(x)) \cdot g^{'}(x) \] | 
| Arcoseno | \[ (\arcsin x)^{'} = \frac{1}{\sqrt{1-x^2}} \] | 
| Arcocoseno | \[ (\arccos)^{'} = \frac{-1}{\sqrt{1-x^2}} \] | 
| Arcotangente | \[ (\arctan x)^{'} = \frac{1}{x^2+1} \] | 
Want to create your own Flashcards for free with GoConqr? Learn more.