|
|
Created by Marissa Miller
about 10 years ago
|
|
| Question | Answer |
| \(\log_{b} x = y\) means... | \( b^{y} = x\) |
| \( \log_{b} (x_{1}x_{2}) = \) | \( \log_{b} (x_{1}) + \log_{b} (x_{2}) \) |
| \( \log_{b} (x_{1}/x_{2}) = \) | \( \log_{b} (x_{1}) - \log_{b} (x_{2}) \) |
| \(b^{\log_{b} x} = \) | \(x\) |
| \((\log_{a} b)(\log_{b} x) = \) | \( \log_{a} x\) |
| \(\log_{b} x^{n} = \) | \(n\log_{b} x \) |
| Sine/Cosine Identity | \(\sin^{2} x + \cos^{2} x = 1\) |
| Cotangent/Cosecant Identity | \(1 + \cot^{2}x = \csc^{2}x \) |
| Tangent/Secant Identity | \(\tan^{2} x + 1 = \sec^{2} x \) |
| \(\sin (\alpha + \beta) = \) | \(\sin\alpha\cos\beta + \cos\alpha\sin\beta \) |
| \(\sin (\alpha - \beta) = \) | \(\sin\alpha\cos\beta - \cos\alpha\sin\beta \) |
| \(\cos(\alpha + \beta) = \) | \(\cos\alpha\cos\beta - \sin\alpha\sin\beta \) |
| \(\cos(\alpha - \beta) = \) | \(\cos\alpha\cos\beta + \sin\alpha\sin\beta \) |
| \(\tan(\alpha + \beta) = \) | \(\frac{\tan\alpha + \tan\beta}{1-\tan\alpha\tan\beta} \) |
| \(\tan(\alpha - \beta) = \) | \(\frac{\tan\alpha - \tan\beta}{1+\tan\alpha\tan\beta} \) |
| \(\sin 2\theta = \) | \(2\sin\theta\cos\theta \) |
| \(\cos 2\theta = \) | \(\cos^{2}\theta - \sin^{2}\theta \) |
| \(\tan 2\theta = \) | \(\frac{2\tan\theta}{1-\tan^{2}\theta} \) |
| \(\sin\frac{\theta}{2} = \) | \(\sqrt{\frac{1-\cos\theta}{2}} \) |
| \(\cos\frac{\theta}{2} = \) | \(\sqrt{\frac{1+\cos\theta}{2}} \) |
| \(\tan\frac{\theta}{2} = \) | \(\frac{\sin\theta}{1 + \cos\theta} \) |
| Sum of Roots of a Polynomial | \(-\frac{a_{n-1}}{a_{n}} \) |
| Product of Roots of a Polynomial | \((-1)^{n}\frac{a_{0}}{a_{n}} \) |
Want to create your own Flashcards for free with GoConqr? Learn more.